Suggested Solutions for $H W 9$
8.3 Qt
5. If $x \geq 0$ and $n \in \mathbb{N}$, show that

$$
\frac{1}{x+1}=1-x+x^{2}-x^{3}+\cdots+(-x)^{n-1}+\frac{(-x)^{n}}{1+x}
$$

Use this to show that

$$
\ln (x+1)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\int_{0}^{x} \frac{(-t)^{n}}{1+t} d t
$$

and that

$$
\left|\ln (x+1)-\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}\right)\right| \leq \frac{x^{n+1}}{n+1}
$$

Sol: Note that $\frac{1-(-x)^{n}}{1-(-x)}=1-x+x^{2}-x^{3}+\cdots+(-x)^{n-1}$
which implies $\frac{1}{x+1}=1-x+x^{2} \cdot x^{3}+\cdots+(-x)^{n-1}+\frac{(-x)^{n}}{1+x}$
Also by the observation $\int_{0}^{x} \frac{1}{1+t} d t=\ln (1+x)$
Then $\ln (1+x)=\int_{0}^{x} 1-t+t^{2}-t^{3}+\cdots+(-t)^{n-1}+\frac{(-t)^{n}}{1+t} d t$

$$
=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\int_{0}^{x} \frac{(-t)^{n}}{1+t} d t
$$

And $\left|\ln (1+x)-\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}\right)\right|=\left|\int_{0}^{x} \frac{(1-t)^{n}}{1+t} d t\right|$
But $\left|\int_{0}^{x} \frac{(t)^{n}}{1+t} d t\right| \leqslant \int_{0}^{x}\left|\frac{(-t)^{n}}{1+t}\right| d t$

$$
\begin{aligned}
& \leq \int_{0}^{x} t^{n} d t \\
& =\frac{x^{n+1}}{n+1}
\end{aligned}
$$

$8.4 \quad 07$
7. Show that the functions c, s in the preceding exercise have derivatives of all orders, and that they satisfy the identity $(c(x))^{2}-(s(x))^{2}=1$ for all $x \in \mathbb{R}$. Moreover, they are the unique functions satisfying (j) and (jj). (The functions c, s are called the hyperbolic cosine and hyperbolic sine functions, respectively.)

Sol: Recall the functions C, s defined in $Q 6$ satisfy
(1) $c(0)=1, \quad c^{\prime}(0)=0, \quad s(0)=0, \quad s^{\prime}(0)=1$
(2) $c^{\prime}(x)=s(x), s^{\prime}(x)=c(x)$ for all $x \in \mathbb{R}$
(3) $c^{\prime \prime}(x)=c(x), s^{\prime \prime}(x)=s(x)$ for all $x \in \mathbb{R}$

By (2), it's clear that C, S have derivatives of all orders
Let $f(x)=(c(x))^{2}-(s(x))^{2}$
Then $f^{\prime}(x)=2 c(x) c^{\prime}(x)-2 s(x) s^{\prime}(x)$

$$
\begin{aligned}
& =2 c(x) s(x)-2 s(x) c(x) \\
& =0 \quad \text { for all } x \in \mathbb{R}
\end{aligned}
$$

Therefore, $f(x) \equiv f(0)=1$

For the uniqueness part, let C_{1}, c_{2} be two functions satisfy (1), (3) and let $\varphi=c_{1}-c_{2}$
Then $\varphi^{\prime \prime}(x)=\varphi(x) \quad \forall x \in \mathbb{R}$ and $\varphi(0)=\varphi^{(k)}(0)=0 \quad \forall k \in \mathbb{N}$
Now pick any $x \in \mathbb{R} \backslash\{0\}$, let $I_{x}=[0, x]$ (or $[x, 0]$ if $\left.x<0\right)$ By Taylor's Tho, for each $n \in \mathbb{N}$, there exists $x_{n} \in I_{x}$ s.t.

$$
\begin{aligned}
\varphi(x) & =\sum_{k=0}^{n-1} \frac{\varphi^{(k)}(0)}{k!} x^{k}+\frac{\varphi^{(n)}\left(x_{n}\right)}{n!} x^{n} \\
& =\frac{\varphi^{(n)}\left(x_{n}\right)}{n!} x^{n}
\end{aligned}
$$

Since φ and φ^{\prime} are continuous on I_{x}, then there exists $k>0$ s.t. $|\varphi(t)|<k$ and $\left|\varphi^{\prime}(t)\right|<k$ for al| $t \in I_{x}$

It follows that $\left|\varphi^{(n)}(t)\right|<K$ for all $n \in \mathbb{N}, t \in I_{x}$
Moreover, $\quad \lim _{n \rightarrow \infty}\left|\frac{x^{n}}{n!}\right|=0$
which implies $\varphi(x)=0$ for all $x \neq 0$
Together with the fact $\varphi(0)=0$, we have $\varphi(x) \equiv 0, \forall x \in \mathbb{R}$
We infer that $C_{1}(x)=C_{2}(x) \quad \forall x \in \mathbb{R}$
The same argument also applies to the uniqueness of $s(x)$
9.1 QI

1. Show that if a convergent series contains only a finite number of negative terms, then it is absolutely convergent.

Sol: Suppose the convergent series $\sum a_{n}$ contains only a finite number of negative terms
Write $A=\Sigma a_{n}$ and B denote the sum of the negative teams where A and B are both real numbers
Then $\sum\left|a_{n}\right|=A-2 B<\infty$
$9.1 \quad Q 6$
6. Find an explicit expression for the nth partial sum of $\sum_{n=2}^{\infty} \ln \left(1-1 / n^{2}\right)$ to show that this series
converges to $-\ln 2$. Is this convergence absolute?

Sol: Note that $\ln \left(1-\frac{1}{n^{2}}\right)=\ln \left(n^{2}-1\right)-2 \ln n$

$$
=\ln (n+1)+\ln (n-1)-2 \ln n \quad \forall n \geqslant 2
$$

Now pick any integer $N \geqslant 2$

$$
\begin{aligned}
\sum_{n=2}^{N} \ln \left(1-\frac{1}{n^{2}}\right) & =\sum_{n=2}^{N}[\ln (n+1)+\ln (n-1)-2 \ln n] \\
& =\sum_{n=1}^{N-1} \ln n+\sum_{n=3}^{N+1} \ln n-2 \sum_{n=2}^{N} \ln n \\
& =-\ln 2+\ln (N+1)-\ln N \\
& =-\ln 2+\ln \left(1+\frac{1}{N}\right)
\end{aligned}
$$

Hence, $\sum_{n=2}^{\infty} \ln \left(1-\frac{1}{n^{2}}\right)=\lim _{N \rightarrow \infty} \sum_{n=2}^{N} \ln \left(1-\frac{1}{n^{2}}\right)$

$$
\begin{aligned}
& =-\ln 2+\lim _{N \rightarrow \infty} \ln \left(1+\frac{1}{N}\right) \\
& =-\ln 2
\end{aligned}
$$

Since all the terms $\ln \left(1-\frac{1}{n^{2}}\right)$ are negative, the series is also absolutely convergent and $\sum\left|\ln \left(1-\frac{1}{n^{2}}\right)\right|=\ln 2$
$9.1 \quad Q 8$
8. Give an example of a convergent series $\sum a_{n}$ such that $\sum a_{n}^{2}$ is not convergent. (Compare this with Exercise 3.7.11.)

Sol: Let $a_{n}=\frac{(-1)^{n+1}}{\sqrt{n}}$, then $\sum a_{n}^{2}=\sum \frac{1}{n}$ is divergent In the following, we wish to show $\sum a_{n}$ is convergent by the Comparison test
Mole that $\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{(n+1) n}}$

$$
\begin{aligned}
& =\frac{1}{\sqrt{(n+1) n}(\sqrt{n+1}+\sqrt{n})} \\
& \leqslant \frac{1}{\sqrt{n^{2}}(2 \sqrt{n})} \\
& =\frac{1}{2} n^{-\frac{3}{2}}
\end{aligned}
$$

Let $b_{n}= \begin{cases}a_{n}+a_{n+1} & \text { if } n \text { is odd } \\ 0 & \text { if } n \text { is even }\end{cases}$

$$
c_{n}= \begin{cases}\frac{1}{2} n^{-\frac{3}{2}} & \text { if } n \text { is odd } \\ 0, & \text { is } n \text { is even }\end{cases}
$$

Then $b_{n} \leqslant c_{n} \leqslant \frac{1}{2} n^{-\frac{3}{2}}, \forall n \geqslant 1$, and $\sum a_{n}=\sum b_{n}$ Since $\sum_{n=1}^{\infty} \frac{1}{2} n^{-\frac{3}{2}}$ is convergent and by the comparison test, $\sum b_{n}$ and $\sum c_{n}$ are convergent, which also implies the convergence of $\sum a_{n}$
$0.1 Q 12$
12. Let $a>0$. Show that the series $\sum\left(1+a^{n}\right)^{-1}$ is divergent if $0<a \leq 1$ and is convergent if $a>1$.

Sol: (1) If $0<a \leq 1$, then $0<a^{n} \leqslant 1$ for all $n \geqslant 1$
Hence $\frac{1}{2} \leqslant\left(1+a^{n}\right)^{-1}<1, \forall n \geqslant 2$
And $\Sigma\left(1+a^{n}\right)^{-1} \geqslant \sum \frac{1}{2}=\infty$ is divergent
(2) If $a>1$, then $0<\left(1+a^{n}\right)^{-1}<a^{-n}, \forall n \geqslant 1$

Since $\sum a^{-n}=\frac{1}{1-a^{-1}}$ is convergent if $a>1$, and by the comparison Test, $\Sigma\left(1+a^{n}\right)^{-1}$ is convergent

