Suggested Solutions for HW9 8.3 Q5 5. If $x \ge 0$ and $n \in \mathbb{N}$, show that $\frac{1}{x+1} = 1 - x + x^2 - x^3 + \dots + (-x)^{n-1} + \frac{(-x)^n}{1+x}.$

Use this to show that

$$\ln(x+1) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \int_0^x \frac{(-t)^n}{1+t} dt$$

and that

$$\left|\ln(x+1) - \left(x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n}\right)\right| \le \frac{x^{n+1}}{n+1}.$$

Sol: Note that
$$\frac{1-(-\chi)^n}{1-(-\chi)} = 1-\chi + \chi^2 - \chi^3 + \dots + (-\chi)^{n-1}$$

which implies $\frac{1}{\chi + 1} = 1-\chi + \chi^2 - \chi^3 + \dots + (-\chi)^{n-1} + \frac{(-\chi)^n}{1+\chi}$
Also by the observation $\int_0^{\chi} \frac{1}{1+t} dt = \ln(1+\chi)$
Then $\ln(1+\chi) = \int_0^{\chi} 1-t+t^2-t^3 + \dots + (-t)^{n+1} + \frac{(-t)^n}{1+t} dt$
 $= \chi - \frac{\chi^2}{2} + \frac{\chi^3}{3} - \dots + (-1)^{n+1} \frac{\chi^n}{n} + \int_0^{\chi} \frac{(-t)^n}{1+t} dt$
And $\left[\ln(1+\chi) - (\chi - \frac{\chi^2}{2} + \frac{\chi^3}{3} - \dots + (-1)^{n+1} \frac{\chi^n}{n})\right] = \left[\int_0^{\chi} \frac{(-t)^n}{1+t} dt\right]$
But $\left[\int_0^{\chi} \frac{(+t)^n}{1+t} dt\right] \leq \int_0^{\chi} \frac{(-t)^n}{1+t} dt$

 $\leq \int_0^{x} t^n dt$

= Xn+1 htl

8.4 Q7
7. Show that the functions c, in the preceding exercise have derivatives of all orders, and that they satisfy the identity
$$(c(x))^2 - 1(0)^2 = 1$$
 for all $x \in \mathbb{R}$. Moreover, they are the unique functions satisfy (i) and (i). (The functions c, sare called the hyperbolic scale and hyperbolic size functions, respectively.)
Sol: Kecall the functions C, S defined in Qb satisfy
(i) $C(0) = 1$, $C'(0) = 0$, $S(0) = 0$, $S'(0) = 1$
(ii) $C'(X) = S(X)$, $S'(X) = C(X)$ for all $X \in \mathbb{R}$
(iii) $C'(X) = C(X)$, $S''(X) = C(X)$ for all $X \in \mathbb{R}$
(iv) $C'(X) = C(X)$, $S''(X) = S(X)$ for all $X \in \mathbb{R}$
By (iv), it's clear that C, S have decrivatives of all orders
Let $f(X) = (C(X))^2 - (S(X))^2$
Then $f'(K) = 2 C(X) C'(X) - 2 S(X) S'(X)$
 $= 2 C(X) S(X) - 2 S(X) C(X)$
 $= 0$ for all $X \in \mathbb{R}$
Therefore, $f(X) = f(0) = 1$
For the uniqueness part, let C, C is be two functions
satisfy (iv) (iv) $\forall X \in \mathbb{R}$ and $Q(0) = Q^{(k)}(0) = 0$ $\forall k \in \mathbb{N}$
Now pick any $X \in \mathbb{R} \setminus [0]$, let $L_X = L_0 \times 1$ (or $L \times 0$) if $\pi < 0$
By Taylor's Thm, for each $n \in \mathbb{N}$, there exists $\pi_0 \in I_X$ s.t.
 $Q(X) = \sum_{k=0}^{N-1} \frac{Q^{(k)}(0)}{k!} X^k + \frac{Q^{(k)}(\pi_0)}{\pi!} X^n$
 $= \frac{Q^{(n)}(f_N)}{k!} X^n$

s.t. | y(t) < K and | y'(t) < K for all t E Ix

It follows that | 4 (n) (t) | < K for all n EIN, t E Ix Moreover, $\lim_{n \to \infty} \left| \frac{x^n}{n!} \right| = 0$ which implies f(x) = 0 for all $x \neq 0$ Together with the fact $\Psi(0)=0$, we have $\Psi(x)=0$, $\forall x \in \mathbb{R}$ We infer that CI(K) = CI(K) VXER The same argument also applies to the uniqueness of SIX)

9.1 QI

1. Show that if a convergent series contains only a finite number of negative terms, then it is absolutely convergent.

Sol: Suppose the convergent series Ian contains only a finite number of negative terms Write A = In and B denote the sum of the negative terms where A and B are both real numbers Then ZIGNI = A-2B <00

9.1 Q6

6. Find an explicit expression for the *n*th partial sum of $\sum_{n=2}^{\infty} \ln(1 - 1/n^2)$ to show that this series converges to $-\ln 2$. Is this convergence absolute?

Sol: Note that
$$\ln (1 - \frac{1}{n^2}) = \ln (n^{2} - 1) - 2\ln n$$

 $= \ln (n + 1) + \ln (n - 1) - 2\ln n$ $\forall n \ge 2$
Now pick any integer $N \ge 2$
 $\frac{N}{n^{-2}} \ln (1 - \frac{1}{n^2}) = \frac{N}{n^{-2}} [\ln (n + 1) + \ln (n - 1) - 2\ln n]$
 $= \frac{N + 1}{n^{-2}} \ln n + \frac{N + 1}{n^{-2}} \ln n - 2 \frac{N}{n^{-2}} \ln n$
 $= -\ln 2 + \ln (n + 1) - \ln N$
 $= -\ln 2 + \ln (1 + \frac{1}{N})$
Hence, $\sum_{n^{-2}} \ln (1 - \frac{1}{n^2}) = \lim_{N \to 00} \sum_{n^{-2}} \ln (1 - \frac{1}{n^2})$
 $= -\ln 2 + \lim_{N \to 00} \ln (1 + \frac{1}{n^2})$
 $= -\ln 2$
Since all the terms $\ln (1 - \frac{1}{n^2})$ are negative, the series
is also absolutely convergent and $\sum [\ln (1 - \frac{1}{n^2})] = \ln 2$

9.1 28

8. Give an example of a convergent series $\sum a_n$ such that $\sum a_n^2$ is not convergent. (Compare this with Exercise 3.7.11.)

Sol: Let
$$an = \frac{(-1)^{n+1}}{\sqrt{n}}$$
, then $\sum an^2 = \sum \frac{1}{n}$ is divergent
In the following, we wish to show $\sum an$ is conversent by
the Comparison test
Note that $\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} = \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n+1}n}$
 $= \frac{1}{\sqrt{n+1}n}$
 $= \frac{1}{\sqrt{n+1}n}$
 $\sum \frac{1}{\sqrt{n^2}(2\sqrt{n})}$
 $= \frac{1}{2}n^{-\frac{3}{2}}$
Let $bn = \int ant anti if n is odd$
 $\int 0$ if n is even
 $Cn = \int \frac{1}{2}n^{-\frac{3}{2}}$ if n is odd
 $\int 0$ is n is even
Then $bn \leq Cn \leq \frac{1}{2}n^{-\frac{3}{2}}$, $\forall n \geq 1$, and $\sum an = \sum bn$
 $Since \sum_{n=1}^{\infty} \frac{1}{2}n^{-\frac{3}{2}}$ is conversent and by the comparison test,
 $\sum bn and \sum Cn = an$

- 9.1 Q12
 - 12. Let a > 0. Show that the series $\sum (1 + a^n)^{-1}$ is divergent if $0 < a \le 1$ and is convergent if a > 1.

Sol: Dif orasi, then oransi for all n21 Hence $\frac{1}{2} \leq (1+c^n) \leq 1$, $\forall n \geq 2$ And $\Sigma(1+\alpha^n)^{-1} > \Sigma_{\Sigma}^{\perp} = 0$ is divergent (2) if a>1, then 0<(1tan) -1 < a-n, Un>1 Since $\Sigma a^{-n} = \frac{1}{1-a^{-1}}$ is convergent if $\alpha > 1$, and by the comparison Test, $\Sigma(Itan)^{T}$ is convergent